Regulation of Ca2+ handling by phosphorylation status in mouse fast- and slow-twitch skeletal muscle fibers.

نویسندگان

  • Yewei Liu
  • Evangelia G Kranias
  • Martin F Schneider
چکیده

The effects of phosphorylation status on Ca2+release and Ca2+ removal were studied in fast-twitch flexor digitorum brevis and slow-twitch soleus skeletal muscle fibers enzymatically isolated from wild-type and phospholamban knockout (PLBko) mice. In all fibers the adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) inhibitor H-89 decreased the peak amplitude of the intracellular Ca2+ concentration ([Ca2+]) transient for a single action potential, and the PKA activator dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) reversed this effect, indicating modulation of Ca2+release by phosphorylation status in all fibers. H-89 decreased the decay rate constant of the [Ca2+] transient and DBcAMP reversed this effect only in phospholamban-expressing fibers (wild-type soleus), indicating modulation of Ca2+ removal only in the presence of phospholamban. A high basal level of PKA phosphorylation in soleus fibers maintained under our control conditions was indicated by the lack of effect of direct application of DBcAMP on Ca2+ release or Ca2+ removal in wild-type or PLBko soleus fibers and was confirmed by analysis of phospholamban from wild-type soleus fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function.

In skeletal muscle, two major types of muscle fibers exist: slow-twitch oxidative (type I) fibers designed for low-intensity long-lasting contractions, and fast-twitch glycolytic (type II) fibers designed for high-intensity short-duration contractions. Such a wide range of capabilities has emerged through the selection across fiber types of a narrow set of molecular characteristics suitable to ...

متن کامل

Effect of progressive resistance exercise on β1 integrin and vinculin protein levels in slow-and fast-twitch skeletal muscles of male rats

Introduction: Skeletal muscle is a flexible and ever changing tissue and the role of costameric proteins in its response to different stimuli is not well defined. The aim of this study was to investigate the effect of progressive resistance exercise on β1 integrin and vinculin proteins in fast and slow twitch skeletal muscles of male rats. Methods: Twelve male Wistar rats (weight: 298±5.2 gr...

متن کامل

The Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study

Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...

متن کامل

The Effect of High and Low-Intensity Interval Training on TRF1 and TRF2 Gene Expression in Slow and Fast-Twitch Skeletal Muscles of C57BL/6 Mice: An Experimental Study

Background and Objectives: The process of chronic diseases and aging is associated with reduced telomere length. The aim of this study was to investigate the effect of high-intensity interval training (HIIT) and low-intensity interval training (LIIT) on telomere repeat binding factor 1 and 2 (TRF1 and TRF2) in Soleus (SOL) muscle as a slow-twitch (ST) and Extensor Digitorum Longus (EDL) muscle ...

متن کامل

The low-affinity Ca2(+)-binding sites in cardiac/slow skeletal muscle troponin C perform distinct functions: site I alone cannot trigger contraction.

Both troponin C (TnC) and calmodulin share a remarkably similar tertiary motif that may be common to other Ca2(+)-binding proteins with activator activity. TnC plays a critical role in regulating muscle contraction and is particularly well-suited for structural analysis by site-directed mutation. Fast-twitch skeletal muscle TnC has two low-affinity Ca2(+)-binding sites (sites I and II), while i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 273 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1997